Data Challenge 02

R Functions and Tidyverse Intro

Jake Moore

Objective

Create small functions and practice tidyverse pipelines with the built-in mpg dataset. Knit to PDF in an
RStudio Project. Use only tidyverse and readxl. Use snake_case. Un-comment and fill in the code as
instructed.

Rules

o Keep object and function names exactly as specified. My test script expects them.
o Use project-relative paths only (none needed here).
e Use clear, one-action-per-line code in pipelines.

0) Setup

library(tidyverse)

Warning: package ’tidyverse’ was built under R version 4.5.1
Warning: package ’ggplot2’ was built under R version 4.5.1
Warning: package ’tibble’ was built under R version 4.5.1

Warning: package ’tidyr’ was built under R version 4.5.1

Warning: package ’readr’ was built under R version 4.5.1

Warning: package ’purrr’ was built under R version 4.5.1

Warning: package ’dplyr’ was built under R version 4.5.1

Warning: package ’stringr’ was built under R version 4.5.1
Warning: package ’forcats’ was built under R version 4.5.1

Warning: package ’lubridate’ was built under R version 4.5.1

-- Attaching core tidyverse packages -—-————--———————————————- tidyverse 2.0.0 --

v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.5.2 v tibble 3.3.0
v lubridate 1.9.4 v tidyr 1.3.1
v purrr 1.1.0

-- Conflicts ———-———————————————————— tidyverse_conflicts() --

x dplyr::filter() masks stats::filter()

x dplyr::lag() masks stats::lag()

i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become error

library(readxl)
Warning: package ’readxl’ was built under R version 4.5.1

1) Inspect mpg (5 pts)

Create two objects with the row and column counts of mpg.

e mMpg_nrow
e mpg_ncol

mpg_nrow <- nrow(mpg)
mpg_ncol <- ncol(mpg)
2) Simple math function (5 pts)

Write a function that returns the sum of two numbers.

e sum_func returns a + b where a and b are the defined parameters.

sum_func <- function(a, b) {
result <- a + b
return(result)

}
3) head-like function, fixed 6 (10 pts)

Return the first 6 rows of a data frame without calling head ().

e head_func(df) returns first 6 rows of the dataframe df.

head_func <- function(df) {
result <- df[1:6,]
return(result)

}

4) head-like with default n (15 pts)

Return the first n rows, default 6. If n <= 0, return zero rows.

e head_func2(mpg, 10) would return the first 10 rows of the dataframe mpg

head_func2 <- function(df, n = 6) {
if (n <= 0) {
result <- df[0,]

} else {

result <- df[1:n, 1]
+
return(result)

}

5) Select three columns (15 pts)

Return only manufacturer, model, and year in that order.

e select_make_model_year(df)

select_make_model_year <- function(df) {
result <- df %>%
select (manufacturer, model, year)
return(result)

}

6) Filter by manufacturer (20 pts)

Keep only rows where manufacturer equals a supplied name (case-sensitive).

e filter_manufacturer(df, manufacturer_name)

filter_manufacturer <- function(df, manufacturer_name) {
result <- df %>%
filter (manufacturer == manufacturer_name)
return(result)

}

7) Compose a readable pipeline (30 pts)

In the real world, we often automate the cleaning process in what is called a pipeline, where we have data
of known format coming in with a specified data formatting coming out using transformations applied.

Create land_rover_models with this pipeline:

. Start from mpg.

. Keep only manufacturer, model, year (use your function from Q5).

. Keep only rows where manufacturer is "land rover" (use your function from Q6).
. Sort by year ascending.

ENEGUR NI

e Object to create: land_rover_models

land_rover_models <- mpg 7%>%
select_make_model_year() %>’
filter_manufacturer("land rover") %>%
arrange (year)

Submission

o Knit this file to PDF.
¢ Submit both the .Rmd and the PDF.

	Objective
	Rules
	0) Setup
	1) Inspect mpg (5 pts)
	2) Simple math function (5 pts)
	3) head-like function, fixed 6 (10 pts)
	4) head-like with default n (15 pts)
	5) Select three columns (15 pts)
	6) Filter by manufacturer (20 pts)
	7) Compose a readable pipeline (30 pts)
	Submission

